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Unraveling the phenotypic and metabolic
responses induced by urea-encapsulated hydrogel
beads on Brassica juncea (L.) Czern & Coss†
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Hydrogels, three-dimensional polymeric networks capable of absorbing and retaining significant

amounts of aqueous solution, offer a promising platform for controlled release of desired compounds.

In this study, we explored the effects of urea delivery through galactoxyloglucan–sodium alginate hydro-

gels on the phenotypic and metabolic responses of Brassica juncea, a vital oilseed and vegetable crop.

The experiments were conducted with four treatments: control (without hydrogel beads and urea),

direct urea supplementation (U), hydrogel beads with urea (HBWU), and hydrogel beads without urea

(HBWOU). Our findings revealed that HBWU-treated plants exhibited commendable plant growth with

significantly higher chlorophyll content (11.06 mg/0.1 g) compared to the control (3.67 mg/0.1 g) and U-

treated group (6.41 mg/0.1 g). Metabolic analysis identified 17 major intra-cellular metabolites involved in

nitrogen metabolism. HBWU treatment significantly boosted nitrogen assimilation in plants, as evidenced by

the upregulation of 9 metabolites. Furthermore, a proposed schematic diagram illustrates the HBWU

induced-metabolic pathways and nitrogen metabolism in B. juncea. These findings demonstrate the

potential of hydrogel-based controlled-release systems to enhance plant growth and nitrogen assimilation.

1. Introduction

Biopolymers, naturally occurring macromolecules derived from
non-fossil biological sources, have garnered substantial atten-
tion as promising alternatives to synthetic polymers due to their
inherent advantages, including biocompatibility, abundance,
and biodegradability.1 Among these biological sources, plant-
based biopolymers, especially polysaccharides, are emerging as
promising renewable resources due to their abundance and
continuous replenishment.2 Galactoxyloglucan (GXG) is a neu-
tral hemicellulose abundantly found in the seed storage wall of
Tamarindus indica L., a member of the Fabaceae family. The
biopolymer, GXG consists of a b-D-(1 - 4) glucan backbone
with a-D-(1 - 6) xylopyranosyl residues attached as side chains.

These xylopyranose side chains are further substituted with
b-D-(1 - 2) galactopyrosyl residues.3 Similarly, algin or alginic
acid is a naturally occurring, insoluble structural polysaccharide
prevalent in the cell wall and intercellular matrix of brown
algae, such as Sargassum sp. Sodium alginate (SA) is a derivative
of alginic acid and which is often referred as a block copolymer
composed of two anionic monomers: 1,4-linked b-D-mannu-
ronate (M) and a-L-guluronate (G) residues. Both GXG and SA
biopolymers demonstrate promising applications in the food,
pharmaceutical, biomedical, industrial, and agricultural
sectors.4,5 As SA is renowned for its hydrogel-forming capabil-
ities, it exhibits distinctive gelation properties, forming hydro-
gels upon interaction with divalent metal cations.6

Hydrogels are three-dimensional networks of hydrophilic
polymers cross-linked by covalent bonds or other physical
interactions, characterized by their high flexibility, swelling
and water retention capacity.7 Owing to their unique attributes,
hydrogels have attracted considerable attention from researchers
as a versatile platform for applications across various fields.
In agriculture and horticulture, hydrogels are particularly valued
for their controlled and sustained delivery of agrochemicals and
their potential as biofertilizers through the encapsulation of
plant growth-promoting microorganisms, ultimately leading to
increased crop yields.8 While inorganic fertilizers like nitrogen,
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phosphorus, and potassium have been pivotal in boosting crop
yields, the growing scarcity of nitrogen resources presents a
major hurdle for sustainable agriculture.9 Urea (U), a widely
used inorganic nitrogen fertilizer with a high nitrogen content
and relatively low production cost, has been a cornerstone of
agricultural practices.10 However, the overuse and prolonged
application of urea fertilizer have led to significant environmen-
tal problems, including volatilization, runoff, nitrate leaching,
and soil infertility. Hence, hydrogels are emerging as a promis-
ing solution for nitrogen management, and tend to release urea
in a slow or controlled manner.9

Nitrogen is a critical macronutrient for plant growth and
development, essential for the synthesis of amino acids, proteins,
nucleic acids, lipids, chlorophyll, and other vital biomolecules.11

Vascular plants primarily absorb nitrogen in the form of nitrate,
ammonium (inorganic), and organic nitrogen (urea) from soil.12

Moreover, urea plays a pivotal role in nitrogen metabolism,
serving as an intermediate in both arginine degradation and
ureide catabolism. Within mitochondria, arginine is broken down
by arginase, contributing to nitrogen recycling following protein
degradation. The resulting urea can be further metabolized in
the cytoplasm by urease, yielding ammonium (NH4+), which is
subsequently assimilated into glutamine. Alternatively, urea can
originate from the catabolism of purines or ureides such as
allantoate and allantoin, which are primarily found in legumes
for long-distance N transport.13 To adapt to varying nitrogen
availability and environmental conditions, plants have evolved
sophisticated mechanisms to regulate their nitrogen metabolism.
Metabolites, the end products of cellular processes, serve as
valuable phenotypic markers, offering insights into the intricate
pathways underlying agronomically relevant traits and their
responses to stress.14 By identifying and quantifying metabolites,
researchers can gain insights into plant biology. This approach is
particularly valuable for studying the effects of nitrogen nutrition
on plant growth, development, and stress tolerance.15

This study was undertaken to investigate the impact of con-
trolled urea release on Brassica juncea, an economically important
crop that serves as both an oilseed and a vegetable. The research
focused on utilizing urea-encapsulated GXG–SA hydrogels as a
novel method for delivering nitrogen to the plants. The primary
objective was to assess how this controlled release mechanism
influences various aspects of plant growth, development, and the
underlying metabolic processes. By providing a steady and sus-
tained supply of urea, the hydrogels are hypothesized to improve
nitrogen use efficiency, potentially leading to enhanced plant
health and productivity. To gain a comprehensive understanding
of the metabolic changes associated with this controlled urea
release, the study involved a comparative analysis. We examined
the effects of urea delivered via GXG–SA hydrogels in contrast to the
conventional method of direct urea application. This comparison is
crucial in determining whether the hydrogel-mediated approach
offers distinct advantages in optimizing nitrogen utilization, pro-
moting better growth outcomes, and influencing the metabolic
pathways in B. juncea. Ultimately, the findings from this research
could provide valuable insights into the development of more
sustainable and effective fertilization strategies for important crops.

2. Materials and methods
2.1. Materials

Urea (carbamide) was purchased from SRL (Sisco Research
Laboratories Pvt. Ltd Mumbai, India). Calcium chloride (CaCl2)
anhydrous was purchased from HiMedia Laboratories Pvt. Ltd
Mumbai, India. Acetone extra-pure was purchased from Santoku
Chemical Company, Ltd Japan. Methanol extra-pure was pur-
chased from M & J Scintek Co., Ltd Taiwan. Methoxyamine
pyridine hydrochloride and N,O-bis(trimethylsilyl)trifluoroacet-
amide (BSTFA) was purchased from Morchem Shanghai Trading
Co., Ltd China. Sargassum sp., was collected from the Pamban
Coastal Area (Latitude – 9116.6630’N, Longitude – 79112.2980’E),
Ramanathapuram, Tamil Nadu, India. Tamarindus indica L. seeds
were purchased from the local market in Karaikudi, Tamil
Nadu, India.

2.2. Biopolymers extraction, characterization and hydrogel
bead optimization

The extraction of GXG from the seeds of T. indica and SA from
Sargassum sp. were done accordingly as described in previous
articles.16,17 Briefly, GXG was extracted through a multi-step
process involving seed decortication, pulverization, defatting,
deproteination, and ethanol precipitation. Decortication and
pulverization were achieved using microwave heating (1000 W
for 120 seconds), followed by water soaking (1 : 4 w/v) for
8 hours, drying at 100 1C for 4 hours, and subsequent pulveriza-
tion. Conventional methods were employed for defatting, depro-
teination, and ethanol precipitation. The resulting precipitate was
air-dried at 60 1C for 8 hours, then ground into a fine powder, and
stored at�20 1C.16,17 Extraction of SA was conducted using a four-
step process involving calcium chloride treatment, acid treatment,
alkaline treatment, and precipitation. Following precipitation,
the samples were dried at 50 1C for 3 hours, ground into a fine
powder, and stored at �20 1C.18 Further, GXG and SA were
characterized and confirmed by Ultraviolet (UV)-visible spectro-
scopy (Labman scientific instruments PVT. Limited, Model no:
LMSP-UV1000B), Fourier transform infrared spectroscopy (FT-IR)
analysis (Bruker, Alpha II-Model Advanced, Berlin, Germany), and
Nuclear magnetic resonance (NMR) analysis using Bruker Avance
NEO NMR spectrophotometer at 298 K. Furthermore, GXG–SA
blended hydrogel beads were prepared using the ionotropic
gelation method. The optimal biopolymer concentration, cross-
linker concentration, and crosslinking time were optimized based
on the swelling attributes of the hydrogel. The optimized biopo-
lymer formulation was GXG (2%)–SA (1.5%), crosslinker concen-
tration (0.1 M CaCl2) and crosslinking time (15 min) which were
elaborately described in previous study.19 For optimizing urea
encapsulation, hydrogel beads were prepared with varying urea
concentrations (0.1%, 0.5%, 1%, 1.5%, 2%, and 2.5%). The
optimal concentration was selected based on the highest urea
release rate and favourable swelling properties. The optimized
formulation, GXG (2%)–U (2%)–SA (1.5%), was utilized in this
research. The optimization of urea-encapsulated hydrogel beads
and their release kinetics were thoroughly investigated in recent
publication.20
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2.3. Preparation of urea encapsulated GXG–SA hydrogel beads

For the hydrogel preparation, SA (1.5% w/v) was dissolved in
distilled water and homogenized using a magnetic stirrer at 600
rpm and 30 1C for 30 minutes to achieve through mixing.
Meanwhile, U (2% w/v) was then added,9,21,22 followed by the
gradual addition of GXG (2% w/v) to the SA–U mixture. The
mixture was further homogenized using a magnetic stirrer at
1000 rpm and 30 1C for 3 hours. Subsequently, the mixture was
added dropwise to a 0.1 M CaCl2 crosslinking solution using a
syringe over 15 minutes (Fig. 1). The resulting beads were
filtered, washed three times with distilled water, and air-dried
at room temperature for 48 hours.19

2.4. Characterization and urea content determination of urea
encapsulated GXG–SA hydrogel beads

The prepared hydrogel beads GXG (2%)–U–SA (1.5%) were
characterized through FT-IR. The measurements were observed
after scanning over (24 scans per sample) with the absorbance
spectral wavelength ranging between 400–5000 cm�1.

The urea content in the prepared hydrogel beads was
analyzed using the diacetyl-monoxime method, as described
in the referenced article,23 with measurements taken on using
Ultraviolet-visible spectrophotometer.

2.5. Evaluation of urea encapsulated GXG–SA hydrogel beads
on Brassica juncea

2.5.1. Plant samples and growth conditions. Commercially
purchased B. juncea (L.) Czern & Coss. (Mustard plants) were
grown individually in pots filled with horticultural compost
(Universal potting soil, FERTIPLUS, Helmond, The Nether-
lands) as a planting medium. This compost having high
organic matter content, consisting of both white and black
peat, plays a significant role in influencing the soil and its
suitability for plant growth. This substrate was selected for its
ability to support seedling establishment and promote uniform
growth. However, peat, being naturally low in nitrogen com-
pared to other organic materials like compost or manure, may
not provide sufficient nitrogen to meet the plants nutritional
needs.24,25 Two-week-old plants were maintained in a con-
trolled environment chamber at 22 1C with a light intensity of
2400–2500 Lux, following a 16-hour light/8-hour dark cycle. The
plants were irrigated with tap water at regular intervals across
all treatments.

2.5.2. Treatments. The experiment was designed with four
treatments; control (C) without urea and hydrogel, direct urea
supplementation (U), hydrogel bead with urea (HBWU) and
hydrogel bead without urea (HBWOU). For the hydrogel treat-
ments, 50 mg of hydrogel beads were applied, and for the urea
group, 16 mg of urea was used (based on predetermined urea
concentration). There were 32 experimental units, with 8 plants
in each group. After 35 days of treatment, the plants were
harvested for further analysis (Fig. 1).

2.5.3. Phenotypic and bio-active compound analysis. For
phenotypic analysis, the entire plant was carefully harvested
and washed with running tap water. Subsequently, their fresh

weight, root length, and shoot length were measured.26 For the
analysis of bioactive compounds, fresh leaves were harvested
and used for chlorophyll estimation by following the acetone
method (Fig. 1). Specifically, 0.1 g of leaves were accurately
weighed and ground with 2 mL of 80% ice-cold acetone. The
volume was then adjusted to 10 mL using 80% acetone. The
chlorophyll content was assessed through spectrophotometric

Fig. 1 A schematic summary of overall methodology employed in
this study.
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analysis, with optical density (OD) values measured at wave-
lengths of 663 nm and 645 nm. A solution of 80% acetone was
used as the blank for this analysis. The amount of chlorophyll
(mg g�1) present in the plant extract was calculated by using the
formula as described in the reference article.27

2.6. Metabolomic profiling of Brassica juncea treated with
urea encapsulated GXG–SA hydrogel beads

2.6.1. Sampling and quenching of the intra-cellular meta-
bolites. Leaf samples (1 g) of B. juncea were collected from the
control, urea, HBWU, and HBWOU test groups. The samples
were ground using a pre-chilled mortar and pestle with liquid
nitrogen. The resulting powder was transferred to a 50 mL centri-
fuge tube containing 20 mL of 60% pre-chilled methanol at
�80 1C.28 Quenching of the metabolism was done in 15–30 seconds.
Then, the mixture was centrifuged at 8500 rpm for 5 minutes at
�4 1C. The samples were stored at�80 1C until further analysis.29–31

2.6.2. Extraction of the intra-cellular metabolites. The
samples were retrieved from the �80 1C after 48 hours, sus-
pended with 2.5 mL of ice-cold methanol–water solution (1 : 1),
thawed in an ice bathtub for 5 minutes, then rigorously
vortexed for a couple of minutes, and frozen in �80 1C for
30 minutes. This cycle was repeated thrice and centrifuged at
10 000 rpm for 20 minutes at �20 1C. An additional 2.5 mL of
ice-cold methanol–water solution was added to the cell pellets
and combined with the former. This supernatant was lyophi-
lized at �80 1C condensation with a 1.000 Pa vacuum for
24 hours and used for further liquid chromatography-mass
spectrometry (LC-MS) analysis.28,31–33

2.6.3. Derivatization of intra-cellular metabolites. The
samples were subjected to a two-step derivatization procedure.
Firstly, 200 mL of methoxyamine pyridine hydrochloride was
mixed with the sample for 30 seconds and incubated at 37 1C
for 90 minutes without disturbances. Secondly, 200 mL of N,O-
bis(trimethylsilyl)trifluoroacetamide (BSTFA) were added to the
mixture, incubated at 70 1C for 30 minutes, and incubated at
room temperature for 30 minutes. The derivatized samples
were transferred to an LC-MS vial for analysis.30,31,34

2.6.4. LC-MS analysis. The LC-MS analysis was performed
using an Agilent LC/Q-TOF 6546 system, equipped with a dual
AJS-E.S.I. source for ionization. The mobile phases consisted of
ultrapure water and LC-MS grade acetonitrile, both containing
0.1% formic acid. Separation was achieved using an acquity
UPLCs BEH C18 column (2.1 mm � 100 mm, 1.7 mm particle
size), with the column oven set to 40 1C. Key mass spectrometer
parameters were as follows: sheath gas temperature at 350 1C
with a flow rate of 11.0 L min�1, fragmentor voltage at 140 V,
capillary voltage at 3.5 kV, and nebulizer pressure at 40 psi.
The gas temperature was set to 320 1C with a flow rate of
12 L min�1, while the collision energy was set at 20 eV. The ion
spray voltage was set to 0 V. The MS1 scan range was m/z 100–
1700, and the MS2 scan range was m/z 20–1700, with a scan
speed of 5 spectra per s and an absolute threshold of 500
counts. Mass tolerance was set at 20 ppm. Functional metabo-
lites abundance differences were assessed using the KEGG
Database and the heat map generated using HemI 2.0.29,31,35–37

2.7. Statistical analysis

All the data are presented as mean � standard error and
analysed using Microsoft Excel 2010. The graphs were plotted
using Origin Pro 8.5, and the analysis of variance (ANOVA) were
analysed using IBM SPSS statistics Version 25. Hierarchical
cluster analysis was performed using the bioinformatics online
platform Heatmapper. Correlation of up-regulated and down-
regulated metabolites was assessed using the bioinformatics
tool Venn Diagram Webtools.

3. Results
3.1. Characterization and urea content determination of urea
encapsulated GXG–SA hydrogel beads

The functional groups of the biopolymers and urea within the
hydrogel beads was analyzed using FT-IR (Fig. S1, ESI†). The
characteristic peaks of urea, GXG, and SA were identified
and compared to standard spectra as in the literature.17,19 The
presence of urea was confirmed by the observation of C–N and
CQO stretching peaks at 1444.38 cm�1 and 1583.10 cm�1,
respectively, along with NH2 stretching at 3469.32 cm�1.10,38

The anomeric group of SA and GXG (b-(1 - 4) glycosidic linkages)
was indicated by a peak at 758.01 cm�1, while uronic acid residues
of SA were evident at 947.91 cm�1 and 1036.86 cm�1. Additionally,
the C–O bending and C–H stretching peaks of GXG appeared at
1294.50 cm�1 and 1482 cm�1, respectively. These findings collec-
tively support the successful incorporation of biopolymers into
the hydrogel beads.19,21,39

Spectrophotometric analysis was performed to quantify the
urea concentration in the hydrogel beads. A calibration curve
was generated using known concentrations of commercial urea
(0.1 to 1 g). The results showed that approximately 0.030 �
0.001 g of urea was entrapped per 0.1 g of hydrogel beads.

3.2. Evaluation of urea encapsulated GXG–SA hydrogel beads
on Brassica juncea

3.2.1. Effect of urea encapsulated GXG–SA hydrogel beads
on plant growth. B. juncea commonly known as mustard, was
selected as the model plant for this study due to its agronomic
and economic importance as a vital oilseed and vegetable crop
cultivated widely across the globe, particularly in regions with
significant agricultural activity.40 The effect of urea encapsulated
hydrogel beads on phenotypic variations in leaves were observed
across all four treatments (Fig. 2) with quantitative growth
parameters summarized in (Table 1). Compared to the control
group, which received neither hydrogel beads nor urea, plants
treated with HBWU (2% GXG, 2% urea, 1.5% SA) exhibited
significant increases in fresh weight, shoot length with, root
length and the leaves are seen as dark green colour. These
findings demonstrate the beneficial effects of these hydrogel
beads on B. juncea plant growth and development. Meanwhile,
HBWOU (2% GXG, 1.5% SA) treated plants showed pale yellow
green leaves with improved growth parameters compared to the
control and urea-only groups, plants exhibited the lowest fresh
weight and shoot length. However, root length was notably
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increased in urea-treated plants (Table 1), indicating a specific
influence on root development.

Previous studies have shown a positive correlation between
nitrogen fertilization and the development of biomass, roots,
and shoots.9,41 However, excessive direct application of urea
can negatively impact plant growth.42 The results of this study
indicated that hydrogel beads significantly enhanced fresh
weight, shoot length, and root length in B. juncea plants
compared to the control group and urea alone treated group.
The controlled-release mechanism of urea from the hydrogel
beads may have contributed to these positive effects on plant
growth, as opposed to the direct application of urea, which has
been shown to reduce growth rates.43

3.2.2. Effect of urea encapsulated GXG–SA hydrogel beads
on bioactive compounds. Chlorophylls are a group of naturally
occurring pigments that give plants their green color. While they
are essential for photosynthesis and also it is recognized as
prominent bioactive compound.44 The depicted (Fig. 3) illustrates
shows the effect of HBWU hydrogel beads treatment on the
chlorophyll content in B. juncea leaves, compared with control,
urea supplemented, HBWOU group. Plants treated with HBWU
exhibited significantly higher levels of chlorophyll a (11.06 mg/0.1
g) and chlorophyll b (8.43 mg/0.1 g) compared to the control group
(3.67 mg/0.1 g and 3.32 mg/0.1 g, respectively) and all other
treatments. While urea-treated plants showed the second-highest
total chlorophyll content (5.26 mg/0.1 g), these results suggest that
the urea encapsulated hydrogel beads may be more effective in
increasing chlorophyll concentration than urea alone.45,46 Notably,
plants treated with HBWOU exhibited the minimal chlorophyll
content (2.30 mg/0.1 g), possibly due to the absence of urea.

Previous studies have demonstrated that nitrogen supplemen-
tation can enhance photosynthesis by increasing photosynthetic
enzyme activity, chlorophyll content, and composition.15 While
the urea-only supplemented groups showed elevated chlorophyll
concentrations, it was notably observed that HBWU treated plants
exhibited efficient chlorophyll content, potentially due to the
controlled release of urea. Although GXG–SA hydrogel treatment
alone had minimal effects on chlorophyll composition however, it
was found to significantly improve plant biomass, root, and shoot
development.47,48

3.3. Metabolomic profiling of Brassica juncea treated with
urea-encapsulated GXG–SA hydrogel beads

Upon the conclusion from the phenotypic responses, the study
hypothesized that urea encapsulated in GXG–SA hydrogel beads
would enhance plant growth and metabolism in B. juncea by
providing a controlled and sustained release of nitrogen com-
pared to conventional urea application methods. This encap-
sulation was expected to improve nitrogen assimilation and
modulate key metabolites involved in nitrogen metabolism,
thereby offering a sustainable approach to agriculture. Hence,
the metabolic profiling was conducted using LC-MS analysis.

The LC-MS analysis (Fig. S2–S5, ESI†) revealed the significant
involvement of intracellular metabolites in urea metabolism within
plants, which plays a critical role in enhancing plant growth.

Fig. 2 Phenotypic variations in leaf colour of B. juncea treated with urea-
encapsulated hydrogel beads.

Table 1 Phenotypic parameters of B. juncea after 35 days of treatments. Different letters (superscript) indicate the statistically significant difference at
P o 0.05

Treatments Control U HBWU HBWOU

Fresh weight (g) 3.16 � 0.11b 2.8 � 0.10c 3.45 � 0.44a 3.27 � 0.07ab

Root length (cm) 17.12 � 1.41bc 16.92 � 1.22c 30.12 � 5.26a 26.55 � 3.33bc

Shoot length (cm) 3.22 � 0.22bc 4.17 � 0.04ab 4.18 � 0.03a 3.02 � 0.09c

Fig. 3 Effect of urea-encapsulated hydrogel beads on chlorophyll con-
tent in B. juncea leaves. Different letters above the bars indicate statistically
significant difference at P o 0.05.
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The study identified seventeen major intracellular metabolites
associated with the urea metabolic pathway (Table S1, ESI†).
Among these, nine metabolites were upregulated in plants treated
with HBWU compared to the control group, mirroring the pattern
observed in plants directly treated with urea. Furthermore, ten
metabolites were upregulated in HBWU-treated plants compared
to those treated with direct urea, and eleven metabolites
showed increased levels when compared to plants treated only
with HBWOU, relative to control groups. Notably, seven metabolites
were downregulated in HBWU-treated plants compared to the
control group (Fig. 4) shows the detection of all seventeen meta-
bolites across the treated and control groups. A total of 58.4% of the
metabolites were detected in all groups. Additionally, 29.4% of the
metabolites were found only in the two groups treated with urea
(HBWU and urea-treated plants). One metabolite (5.9%) was
detected in all groups except the urea-treated ones, while another
5.9% was detected exclusively in the HBWU-treated plants.

Urea, a well-known plant growth-promoting substance, can
be absorbed through the roots from the soil or synthesized
internally via arginine catabolism through the action of
arginase.49 As a primary nitrogen source, urea is integrated
into plant metabolism and essential for growth and develop-
ment. Upon entering the plant cell, urea undergoes hydrolysis
by the enzyme urease, yielding ammonia and carbon dioxide.50

The resulting ammonia is assimilated into amino acids, which
are crucial for protein synthesis, chlorophyll production, and
nucleic acid formation.51 Efficient urea metabolism is essential
for optimizing plant growth, yield, and nitrogen use efficiency
despite mitigating environmental impacts such as nitrogen
leaching and greenhouse gas emissions. Several factors, includ-
ing soil pH, microbial activity, plant species, and other ecolo-
gical conditions, influence urea metabolism.

The study further demonstrated that urea supplementation
through both hydrogel beads and direct application led to sig-
nificant activation of the glutamine synthetase/glutamine:2-
oxoglutarate amidotransferase (GS/GOGAT) cycle. The GS/GOGAT

pathway begins with the assimilation of ammonia, derived from
urea, into glutamine and then into glutamate.51 This ammonium
ion is primarily assimilated in chloroplasts via the GS/GOGAT
pathway.14 In higher plants, two major isoforms of GS are present:
GS1, localized in the cytosol, and GS2, located in plastids. GS1
plays a critical role in leaf senescence and the synthesis of
glutamine, which is transported through the phloem sap, while
GS2 is involved in photorespiration.14,52 Plastid-localized GS cata-
lyzes the ATP-dependent conversion of glutamate and ammonia
into glutamine. This glutamine then reacts with 2-oxoglutarate (2-
OG), producing two molecules of glutamate.14 Hierarchical cluster
analysis revealed that the presence of high levels of glutamate was
detected in plants treated with HBWU and direct urea, with
negligible amounts found in the HBWOU and control treatments,
probably due to the limited availability of urea in the soil or
environment (Fig. 5 and Fig. S6, ESI†). Glutamate is the central
molecular in amino acid metabolism in plants and acts as the
substrate for the production of glutamine-by-glutamine
synthetase.52 Conversely, glutamine levels were higher in the
control group, followed by HBWU, direct urea, and HBWOU
treatments. The control group exhibited glutamine levels 1-fold
higher than HBWU, 1.5-fold higher than direct urea, and 2.2-fold
higher than HBWOU. This indicates that limited urea supplemen-
tation in the control and HBWOU treatments slowed the conver-
sion of glutamine to glutamate. In contrast, abundant urea in the
HBWU and urea-treated plants accelerated the glutamate conver-
sion. Glutamine in the higher plants was produced from the
conversion of glutamate by enzymes, and glutamate levels fell.53

Notably, glutamate levels in HBWU were 1.5-fold higher
than in plants treated with direct urea. N-Carbamyl-L-
glutamate, an intermediate in urea metabolism and a precursor

Fig. 4 Venn diagrammatic representation of up and down-regulated
metabolites across all the treated groups of plants.

Fig. 5 Hierarchical cluster analysis of up and down-regulated metabolites
in all the treated groups of plants.
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for arginine biosynthesis, was also more abundant in urea-
treated plants, followed by HBWU-treated plants. Specifically,
N-carbamyl-L-glutamate levels were 2-fold higher in HBWU than
in HBWOU and 1.5-fold higher than in the control group, with a
similar trend observed in urea-treated plants. N-Carbamyl-L-
glutamate is involved in the process of histidine production
and is also directly involved in seed aging and low-vigor seed
proliferation.54 2-Oxoglutarate, a key obligatory intermediate
metabolite in urea metabolism, was also detected. This meta-
bolite is involved in several crucial metabolic pathways, includ-
ing the tricarboxylic acid cycle (TCA cycle), pentose and
glucuronate interconversions, ascorbate and arginine biosynth-
esis, alanine, aspartate and glutamate metabolism, lysine bio-
synthesis and degradation, histidine metabolism, and various
other pathways related to secondary metabolites, antibiotics,
and plant hormones including gibberellin which directly plays
a role in early senescence and ripening of the fruits.55

Carboxyphosphate, an intermediate product and also rate
limiting factor of PEP carboxylase reaction, was present across
all treatments at similar levels, with a slightly higher concen-
tration in plants treated with HBWU and HBWOU compared to
the control and urea treatments. This could be attributed to the
polysaccharide compounds present in the hydrogel beads.56

Similarly, ADP levels were elevated in plants treated with
hydrogel beads, as ADP is a product of phosphorylation.
Carboxyphosphate reacts with ammonia to produce carbamic
acid, which then reacts with ATP to form carbamyl phosphate
and ADP.57 The levels of carbamyl phosphate were comparable
across all treatments, with no significant differences observed.

D-Glucosamine 6-phosphate, involved in nucleotide sugar
biosynthesis and alanine, aspartate, and glutamate metabolism, was

identified in all treatments but showed reduced levels in HBWU,
followed by control, urea, and HBWOU.58 5-Phosphoribosylamine, a
crucial metabolite in purine metabolism, was found in abundance
�2-fold higher in HBWU and 1-fold higher in urea-treated plants,
with minimal production in the control and HBWOU groups. This
metabolite plays an essential role in purine metabolism, secondary
metabolite biosynthesis, and alanine, aspartate, and glutamate
metabolism.59 Similarly, 2-oxoglutaramate, a transamination
product of glutamine, another important metabolite with roles
analogous to 5-phosphoribosylamine, was detected in HBWU and
urea-treated plants.60,61

50-Phosphoribosylglycinamide, an intermediate in purine
metabolism derived from ribose, was found in high abun-
dance-5-fold higher in HBWU and 2-fold higher in urea-
treated plants, with no or very low levels detected in the control
and HBWOU groups.59 Deoxyinosine, a key metabolite in
purine and nucleotide metabolism and a facilitator of adeno-
sine nucleoside uptake via ABC transporters, was abundant in
HBWU and urea-treated plants.62

In addition to these metabolites, intracellular nutrient
metabolites such as NAD+, NADP+, NADPH, ATP, ADP, and
NADH were detected, with higher concentrations observed in
HBWU and urea-treated plants compared to control and
HBWOU treatments. The abundance of these metabolites
indicates a sustained cyclization of metabolic pathways,
thereby enhancing plant growth and development, as evi-
denced by phenotypic characteristics.

Overall, this study revealed the impact of urea application on
plant metabolism using LC-MS analysis. The data suggest that
urea supplementation, particularly via HBWU, promotes the
activation of the urea metabolic pathway, leading to increased

Fig. 6 A schematic representation of proposed HBWU-induced metabolic pathway and nitrogen metabolism in B. juncea.
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levels of key metabolites associated with nitrogen assimilation,
purine biosynthesis, and energy metabolism. Based on these
results, the possible schematic metabolic pathway has been
elucidated for HBWU treated plants. Differences in the intra-
cellular metabolites and the metabolic path are represented,
indicating the red colour upside arrow for the upregulation of
intracellular metabolites and the blue colour downside arrow
for the downregulation of intracellular metabolites (Fig. 6).
These findings contribute to a deeper understanding of how
urea application influences plant growth and development,
paving the way for optimizing the strategies.

4. Conclusion

This research work demonstrates the potential of urea encap-
sulated hydrogel beads as a controlled-release system for urea
delivery to enhance plant growth and nitrogen uptake in B.
juncea. Based on our findings, GXG (2%)–U (2%)–SA (1.5) w/v
hydrogels represent an effective medium for controlled-release
of urea, leading to enhanced plant growth and nitrogen assim-
ilation in B. juncea. The experimental design included four
treatments: control (C) without urea and hydrogel, direct urea
supplementation (U), hydrogel beads with urea (HBWU), and
hydrogel beads without urea (HBWOU). The results demonstrated
that the hydrogel-mediated delivery of urea significantly increased
the biomass, shoot and root length, and total chlorophyll content.
While compared with the control plants, the metabolic profiles of
HBWU treated plants revealed the upregulation the key metabo-
lites involved in nitrogen metabolism. These findings highlight
that the hydrogel system can optimize the availability of nitrogen
to the plant, promoting the promising applications of hydrogel-
mediated controlled-release systems in agricultural practices for
improving plant health and productivity.
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